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Abstract The study proposes a formal theory of comparative relations character-
ized by a group of abstract definitions and axioms. This abstract characterization
allows us to rigorously define in a very general form what a comparative relation is,
which can in turn be used as starting point in every case where comparative analysis
is used. Some of the consequences of this formalization—when applied to existing
results- are analyzed, particularly those related with the consistency of the results of the
comparisons. Following, a study was conducted of descriptors of Quantum Quantita-
tive Structure–Property Relationships models proposed by Carbó-Dorca et al. Several
quantum comparative indices such as: Carbó, Hodgkin–Richards, Petke, Tanimoto,
conjugate Petke and conjugate Hodgkin–Richards were also analyzed. The proposed
theory gives a solid theoretical basis for comparative analysis that will have a positive
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impact on a broad spectrum of disciplines, where the field of chemistry could be one
of the most important beneficiaries.

Keywords Comparative relations · Comparative measures · Axiomatic description ·
Quantum quantitative structure-property relationships · Quantum comparative indices

1 Introduction

Comparison is a frequent task in everyday life. Our first opinions about some particular
event are often based on its similarities and differences with respect to other known
facts. Since plastic arts [1] to biology [2], comparative analysis has been extraordi-
narily powerful because when it is correctly done, valuable conclusions are obtained
about many different topics and phenomena.

Comparative analysis is regularly used in chemistry with a broad application spec-
trum: the comparison between chemical elements, which allow the discovery of many
relationships among them [3], the classification of organic compounds in classes due
to their common performance [4], and so on. The central chemical idea that simi-
lar molecules have similar properties has been often applied. It is not strange that
molecular similarity results have been broadly used in the context of Quantitative
Structure-Activity Relationships (QSAR) [5–14]. This justifies the huge interest in
the area of molecular similarity, particularly in the problem of how to quantify the
degree of similarity among a group of molecules. Numerous elegant approaches have
been developed in order to use this idea [5–31].

In different areas a central task has been to bring together several comparative mea-
sures inside a common framework. Particularly in the field of molecular similarity we
should highlight the works of Carbó-Dorca et al. [11–15,27–29] and Maggiora et al.
[26]. Unfortunately, by now it does not exist a general theoretical framework for the
comparative analysis. That is because these works do not begin with a general and
precise definition of what a comparative relation between objects should be. Instead,
they are all based on expressions which presumably could be used to quantify the
degree of similarity among different objects of interest; however, in taking such an
approach, we are ignoring the general nature of the comparative analysis. Working
with an expression that has not been deduced from the general features of the com-
parative analysis could bring contradictions when their results are interpreted in the
context of our intuitive knowledge of comparisons.

In this paper we are presenting a formal study of comparative relations through a
set of axioms and definitions that lends their abstract characterization. This allow us to
rigorously define what a comparative relation is, which can in a general sense be used
as starting point in every case when comparative analysis is used. A theory constructed
in this way gives a solid theoretical basis to this thematic, allowing us to increase the
advantages drawn from comparative analysis. The application of the developed theory
would help us not only in gaining new insights from the uses of similarity measures and
indices, but also would become a methodological tool in the development of new ones.

After discussing the formal theory of the comparative relations, some of its conse-
quences are presented as well as a detailed analysis of what we call the consistency

123



1346 J Math Chem (2010) 47:1344–1365

between the results of the comparisons, a new concept, defined in the paper. Addi-
tionally we present some results of the application of this theory to the problem of
molecular similarity. To do this we lean in the foundational work of Carbó-Dorca and
coworkers in which molecular similarity was defined in terms of electronic density
functions [21,22]. Descriptors of Quantum Quantitative Structure-Property Relation-
ships (QQSPR) models proposed by Carbó-Dorca et al. [8–15]are studied in detail.
There are also analysis of several quantum similarity and difference indices such as:
Carbó [15,21], Hodgkin-Richards [23], Petke [24], Tanimoto [25], conjugate Petke
and conjugate Hodgkin-Richards [26]. It should be noted that the theory discussed
here represents a general framework for the comparative analysis and all its applica-
tions. We present the discussions about the problem of molecular similarity only as
an example of the application of this theory to a particular situation.

2 Foundations of the formal theory of the comparative relations

2.1 Notation

Comparative relations sets acting over the elements (objects) of some set M �= ∅ will
be called CM , C ′

M , etc. CM = SM ∪ DM ; SM : similarity relations, DM : dissimilarity
relations (both over the set M). Similarity relations tell us how similar two objects are;
dissimilarity relations show how different they are. The comparison between elements
i and j belonging to M with the relation C ∈ CM will be written as Ci j (correspond-
ingly Si j or Di j ). Self comparative relations (result of an object autocomparisson) will
be written as Cii , Sii orDii .

2.2 Axioms

Let us discuss the axioms that formalize the comparative relations.
1st Axiom (of allowed values):
The result of comparing any two objects is always a non negative number.

∀C ∈ CM , ∀i, j ∈ M : Ci j ≥ 0 (1)

This axiom lacks an evident justification that the others possess. The objective of
giving the axiom character to the statement (1) is to establish a parallelism between
our system of axioms and the distance axioms. Additionally, this axiom facilitates the
work with the results of the comparisons.
2nd Axiom (of symmetry):
The result of comparing two objects is independent of the order in which they are
selected to carry out the comparison.

∀C ∈ CM , ∀i, j ∈ M :Ci j = C ji (2)

The results of a comparison are commonly exposed without indicating in which order
the objects were considered (e.g. in the amusements where the competitor is compelled
to search differences between two similar images, usually there is not an indication

123



J Math Chem (2010) 47:1344–1365 1347

about their order), which indicates that the result of the comparisons does not depend
on the order of selection of the objects that will be compared. This offers a strong
intuitive justification to the symmetry axiom.
3rd Axiom (of extreme values):
For any set M the result of any self comparative relation of any object of the set is a
strict extreme (maximum or minimum) of the set of all the results of comparing the
selected element with the elements of M by means of the chosen relation.

(∀i ∈ M) ∧ (∀C ∈ CM ) , Cii is a strict extreme of the set
{
Ci j

}
, j ∈ M .

(∀i, j ∈ M) ∧ (∀S ∈ SM ) : Sii ≥ Si j (3)

if j ∈ M, Sii = Si j ⇔ i ≡ j

(∀i, j ∈ M) ∧ (∀D ∈ DM ) : Dii ≤ Di j (4)

if j ∈ M, Dii = Di j ⇔ i ≡ j

Here ≡ indicates an equivalence relationship defined over the elements of M.
This axiom is justified because it is clear that given any object does not exist any other
object more similar to it than itself or less different of it than itself.
In the way it is presented herein this axiom is quite restrictive, for that reason it is
interesting to analyze the situations in which it can be relaxed. Of course, the relaxa-
tion of the axiom cannot introduce incongruities with its intuitive justification: under
any conditions we can obtain that for a given object exists other object more similar
or less different to it than itself. Taking this into consideration it is clear that the only
possibility to relax the axiom lays in the equivalence relationship defined over the
elements of M. From the way in which the axiom is presented it turns out that we can
define the equivalence relationship in order to work with comparative relations which
gives for the comparisons of some pairs of objects conveniently selected the same
result as for the self comparisons of any of the elements of the pair. This possibility
can be intuitively justified if it is remembered that comparing two objects is nothing
more than establishing relations between their characteristics. According to this we
can think in the equivalence relationship as defined over the characteristics of the
objects. In this sense two objects are equivalent under some features if these features
are the same in both of them, and a comparative relation does nothing but reflect this
when the objects are compared; therefore, a comparative relation divides M in classes,
each of them formed by the objects for which Cij = Cii = Cjj (in all cases referred
to the chosen relation); this implies that the equivalent objects have some identical
characteristics. It is straightforward to prove that these classes are equivalence classes.
Further discussions about this topic will be presented in a future work.
We consider that the previously presented axioms are enough to abstractly describe
the comparative relations.
In order to show how the given axioms work, let demonstrate a theorem concerning
to the comparative relations.

Theorem 1 ∀CM , SM , DM :SM ∩ DM = ∅

Proof To prove the theorem is equivalent to demonstrate that any comparative rela-
tion C can not be at the same time a similarity and a dissimilarity relation. We will
demonstrate this by reduction to the absurdity.
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Let

C ∈ CM :C ∈ SM ∧ C ∈ DM

∀i, j ∈ M, j �= i,
(
C ∈ SM ⇒ Ci j < Cii

) ∧ (
C ∈ DM ⇒ Ci j > Cii

)
(3rd Axiom)

Combining the last inequalities we will have Ci j < Ci j . This contradiction proves the
theorem. The application of the theory confirms an already known result, but now is
obtained from a rigorous theoretical framework. �
The previous axioms determine if a given expression can be considered a comparative
relation: a measure of the similarity or the difference between objects.
Another important question deals with the possibility to work simultaneously with
different comparative relations defined over M. This is interesting because there are
cases in which there have been defined diverse comparative relations over one group
of objects (for instance in the work with molecular systems there have been defined
several quantum similarity and dissimilarity measures and indices). This important
question is discussed in the following:

Consistency relationship:

∀i, j, k ∈ M; ∀S, D ∈ CM ,
(
Sij − Sik

) · (
Dij − Dik

) ≤ 0 (5)

Therefore, from the fact that i is more similar/different to j than to k (when compared
with any relation S/D belonging to SM/DM ) it must be deduced that i is less differ-
ent/similar from j than from k (for every relation D/S belonging to DM/SM ) and vice
versa.
This expresses the interrelation between different comparative relations belonging to
a set CM , ensuring the consistency among them. If a set CM fulfills the Consistency
Relationship, it will be termed a consistent set.
In (5) it is impossible to work solely with the strict inequality (even in the case when
objects that belong to M were different among them) because we are unable to assure
that j �= k ⇒ Ci j �= Cik,∀i ∈ M . This allows the common assumption of consider-
ing the metrics as dissimilarity relations (e.g. in the theory of Fourier series).
Now we present a theorem that clarifies if it is possible to work at the same time
with all the comparative relations which could be defined over M. Additionally, it
illustrates how important is to guarantee the consistency for any set of comparative
relations. It should be noticed that this is a new concept, not related with previous uses
of consistency in molecular alignment and molecular similarity.

Theorem 2 Let CM = SM ∪ DM be a consistent set, then
(∀S, S′ ∈ SM

) ∧(∀D, D′ ∈ DM
)

it is true that:

(
Si j − Sik

) ·
(

S′
i j − S′

ik

)
≥ 0 (6)

(
Di j − Dik

) ·
(

D′
i j − D′

ik

)
≥ 0 (7)
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Proof

CM consistent ⇒
((

Sij − Sik
) ·

(
D′

ij − D′
ik

)
≤ 0

)
∧

((
S′

ij − S′
ik

)
·

×
(

D′
i j − D′

ik

)
≤ 0

)
(8)

Multiplying the last inequalities:

(
Si j − Sik

) ·
(

S′
i j − S′

ik

)
·
(

D′
i j − D′

ik

)2 ≥ 0 (9)

but
(

D′
i j − D′

ik

)2 ≥ 0

then

(
Si j − Sik

) ·
(

S′
i j − S′

ik

)
≥ 0 (10)

Following a similar procedure we can prove the inequality (7), which completes the
proof of Theorem 2.
From this theorem we can obtain the following:

Corollary Let CM = SM ∪ DM be a consistent set, then:

(∀S, S′ ∈ SM
) ∧ (∀D, D′ ∈ DM

) :
{

Sij ≥ Sik ⇔ S′
ij ≥ S′

ik
Dij ≥ Dik ⇔ D′

ij ≥ D′
ik

Because of (6) and (7), in a consistent set the fact that an object i is more or less similar
or different to an object j than to another object k is independent of the relation S or D
selected to make the comparison.
The independence in the qualitative result of the comparisons (it means, the relative
level of similarity or dissimilarity between the objects, commonly expressed in phrases
like: “i is more similar to j than to k”, etc.) that comes from this theorem cannot be
interpreted as an affirmation of the independence of the degree of similarity or dis-
similarity of the objects respect to any set of comparative relations defined over them.
It should be possible that different sets of relations fulfilling the above mentioned
axioms and the Consistency Relationship lead to different qualitative results over the
objects of M. It must be pointed out that the Consistency Relationship concerns only
to the interrelation between the comparative relations in each individual set.
From the above-mentioned it is easy to see that in each consistent set CM the state-
ments “i is more similar/different to j than to k” (a) and “i is more similar/different
to k than to j” (b) cannot be true at the same time. It turns out clearly that the second
assertion is equivalent to “i is not more similar/different to j than to k” (c). The fact
that statements (a) and (c) cannot be obtained simultaneously proves that they fulfill
the logical axiom of non contradiction. Then, the results obtained with comparative
relations belonging to consistent sets are non contradictory between them. In the case
of non consistent sets, comparative relations applied simultaneously could give con-
tradictory results. Though the fact that different relations can give different results
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when applied to the same set is known, this problem has never been treated in detail.
Here, in the framework of the theory, we analyze the subject through the new concept
of consistency, and obtained a way to know when two relations can be used at the
same time over the objects of the set M, without giving contradictory results, giving
extraordinary importance to the concept.
An expression can be considered a comparative relation between the objects of some
set M if it fulfills all the axioms discussed above. The sole (but important) role that the
Consistency Relationship plays is to tell us which comparative relations can be used
at the same time over a set M.

3 Study of the molecular similarity

Now we will present an example of the application of the discussed theory to a partic-
ular situation: the issue of molecular similarity. Although many different and elegant
techniques have been developed in order to solve this problem [5–31], the present work
will be particularly focused in the study of molecular similarity measures defined in
terms of electronic density functions, as in an early work published by Carbó-Dorca
et al. [21,22]. We will also study some field-based molecular comparative indices
[26] such as Carbó similarity and dissimilarity indices [15,21] and Hodgkin-Richards
[23], Petke [24], Tanimoto [25], conjugate Petke and conjugate Hodgkin-Richards
[26] similarity indices. We will give special attention to the study of the descriptors
of the QQSPR models proposed by Carbó-Dorca et al. [9–15].

3.1 Analysis of the QQSPR based on quantum similarity

The aim of this point is to check if the well-known descriptors of QQSPR models
proposed by Carbó-Dorca et al. [9–15] can be taken as similarity relations according
to the axioms previously presented. It has been proposed that their descriptors can be
considered as quantum similarity measures between molecules [9–15].
It should be pointed out that these comparisons are not made directly over the mol-
ecules. Instead, they are carried out working with their respective electronic density
functions [8–15,21,22]. This can be done through the existence of a one to one relation
between molecules and electronic density functions [14].
To construct such a model as those described in ref [12–15] it is necessary to have
a set M = {Mi }i=m

i=1 of quantum objects (called the primary set); also, for each Mi

belonging to M, it is necessary to know its electronic density function ρi and the πi

value of the property π which we want to predict (in the following we are going to
talk about quantum objects and not only about molecules since although the principal
aim of the creation of these models is their application to molecular systems, it has
been pointed out the possibility to use them in any quantum system [15], which offers
a great generality to this formalism).
One of the most interesting features of Carbó-Dorca’s QQSPR models is that they
give a causal explanation to the established relations between the quantum objects
and their properties, the so called fundamental QQSPR equation [12–15]. To do that
Carbó-Dorca reminds us that the expectation value of a given property π can be
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expressed as [13–15]:

〈π〉 =
∫

D

Pπρ dr (11)

Where Pπ is the hermitian operator associated to π . In the majority of his works
Carbó-Dorca takes for Pπ the form given below [10–12,15]:

Pπ ≈
m∑

i=1

αi g (ρi ) Ω(r) (12)

Herein the αi are coefficients which can be obtained in different ways [10–12,15]
with the help of the information we have of the set M; Ω(r) is an operator that we
need to choose (by now the only restriction that we impose over Ω(r), sufficient to
assure that Pπ is hermitian, is that Ω(r) must be a real function of r, e. g. Ω(r) = r−1)

and the g(ρi ) terms are continuous transformations of the electronic density functions
of the objects belonging to M. Although there exists the possibility to construct the
operator Pπ in different ways, allowing the inclusion of an operator acting as a gauge
as well as terms with products of the electronic density functions of the elements of
the primary set [13,14], in all cases for its construction are taken the electronic density
functions of the objects belonging to the primary set (it is necessary to do that because
the complexity of the properties that we want to predict hinders the application of the
correspondence principle). Additionally, all terms appearing in (12) are found, this
means that the descriptors obtained when working with this form of Pπ will be as well
obtained working with any other form of Pπ . For this reason since now on we will
only consider the form of Pπ given in (12).

Building the operator Pπ according to (12) for a given molecule MA it is found
that:

〈πA〉 =
∫

D

PπρAdr (13)

〈πA〉 =
∫

D

[
m∑

i=1

αi g (ρi ) Ω(r)

]

ρAdr (14)

〈πA〉 =
m∑

i=1

αi

⎡

⎣
∫

D

g (ρi ) Ω(r)ρAdr

⎤

⎦ (15)

Therefore, it is possible to write:

〈πA〉 =
m∑

i=1

αi CiA (16)
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which is similar to the fundamental QQSPR equation [12–15]. Here:

CiA =
∫

D

g (ρi ) Ω(r)ρAdr (17)

A similar procedure can be used in order to express <πi> for all the objects of the
primary set M I , obtained from M substituting each time the object MA for Mi . Keep-
ing in mind that the transformation g appearing in the structure of Pπ is independent
of the starting primary set, it follows that:

∀i, CAi =
∫

D

g (ρA) Ω(r)ρi dr (18)

As priorly stated, we are studying these models because it has been proposed that their
descriptors, the CiA’s, can be considered as quantum similarity measures between the
quantum objects [8–15]. Let us see if they fulfill the axioms of the previously presented
theory.
For C to be a comparative relation it must be, in accordance with the symmetry axiom,
that CiA = CAi, that is:

∫

D

g (ρi ) Ω(r)ρAdr =
∫

D

g (ρA) Ω(r)ρi dr (19)

Keeping in mind that (19) must be true for any considered primary set and/or objects
MA, Mi , it must be:

g(ρ) = sρ, s ∈ � (20)

Now it is possible to see (in accordance with the 1st Axiom) that, in order to consider
C as a comparative relation, Ω0(r) = sΩ(r) must be a positive defined operator. In
refs [8,15] they assume that g(ρ) = ρ (equivalent to take s = 1) and for that reason
they only use positive defined operators Ω(r). Here we have demonstrated that this
is only one of the possible results if the descriptors of the model are to be inter-
preted as comparative relations. From now on we will work under these assumptions,
as is usually done, because it would not affect any of the results or deductions pre-
sented below. Also, these considerations allow obtaining the well known fundamental
QQSPR equation [12–15].

From this it is set that in this formalism the only allowed “comparative measures”
are those given by the expression:

Cij =
∫

D

ρiΩ (r)ρ j dr (21)
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This is the general form of the Quantum Similarity Measure (QSM) defined by
Carbó-Dorca in his works [8–15,21,22]. The next step is to check if it fulfils the
axioms here presented.

The first two axioms are immediately fulfilled since Eq. (21) was obtained under
the assumption that these axioms are true for these “measures”. For the validation of
the measure under the 3rd Axiom, it is necessary to consider three density functions
that guaranty:

∫

D

ρ j dr ≤
∫

D

ρi dr ≤
∫

D

ρkdr (22)

So
∫

D (ρi − ρk)dr ≤ 0
ρk (r) and ρi (r) are continuous functions, so there must exist D1 ⊂ D where ρk (r) ≥
ρi (r).
Now, evaluatingCii − Cik :

Cii − Cik =
∫

D

ρiΩ(r)ρi dr −
∫

D

ρiΩ(r)ρkdr =
∫

D

ρiΩ(r) (ρi − ρk) dr (23)

Cii − Cik =
∫

D1

ρiΩ(r) (ρi − ρk) dr +
∫

D2

ρiΩ(r) (ρi − ρk) dr (24)

whereD2 = D\D1. The first integral is negative, and in any case where the addition
of the two integrals gives a negative number

Cii ≤ Cik (25)

So C can not be used as a similarity relation in these cases, because it violates the 3rd
Axiom. Repeating this reasoning with ρ j andρi it is easy to demonstrate that

Cij ≤ Cii (26)

So, C could not be used as a dissimilarity relation.
It can be noticed that violations of such type can be easily found when working with
sets constituted by independent atoms. For example, inequality (25) is evident if i
= H and k = Br. A similar situation can be obtained when working with molecular
systems. In a recent work [32] we observed these violations when comparing, using
the Coulomb operator in (21) [15], different structural patterns found in acetamide
polymorphs. Taking in consideration that the compared structures were constituted by
the same atoms (they only differ in the position in the space of the atoms that form
them) we can expect to find similar situations when working with molecules formed
by different atoms. This shows that the above mentioned violations are not exclusive
of the atomic systems.
It must be noticed that these problems in the performance of the 3rd axiom are given
by violations of our intuitive knowledge of the comparative relations, so they are inde-
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pendent of the equivalence relationship established over the elements of any quantum
objects set. Therefore, in some situations, we can find quantum objects sets in which
expressions (21) can not be considered as comparative relations.

3.2 Study of some field-based molecular comparative indices

For quantifying the degree of similarity between molecules many field-based molec-
ular comparative indices have been proposed [15,21,23–26]. In this work we are
going to study, using the formal theory here presented, some of them: Carbó similarity
and dissimilarity indices [15,21], Hodgkin-Richards [23], Petke [24], Tanimoto [25],
conjugate Petke and conjugate Hodgkin-Richards [26] similarity indices. Although
different studies have been carried out over these indices establishing many relations
among them (for instance, a work of Maggiora et al. in which it is created a for-
malism who incorporates many of the above mentioned indices [26]) we decided to
present each index separately in order show how the above discussed formalism can
be applied to each individual case for obtaining valuable conclusions. In doing so
firstly we are going to study the performance of the previously presented axioms. Due
to their particular characteristics we will work first with Carbó indices, leaving for a
second paragraph the discussions relating to the other indices. Finally, we will analyze
the consistency among them.

3.2.1 Analysis of the performance of the extreme values axiom for Carbó similarity
and dissimilarity indices

It can be proven that the expression (21) fulfils all the axioms of the scalar product
[33]. Is for this reason that is introduced the nomenclature:

Cij
def= (i, j) (27)

Using (21) and (27), Carbó similarity index can be written as:

Bij = (i, j)√
(i, i)( j, j)

(28)

And Carbó dissimilarity index is:

Dij = √
(i, i) + ( j, j) − 2(i, j) (29)

It is easy to note that (28) is the expression of the cosine of the angle subtended by i
and j; and that (29) is the Euclidean distance between two vectors.
Remembering that(i, i) = ∫

D ρ2
i Ω (r) dr, as well as the properties of electronic den-

sity functions it is evident that:

∀Mi ∈ M : (i, i) > 0 (30)
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This is a very important result, meaning that it is always possible to calculate these
indices for any two molecules (this is also true for the indices that will be discussed
below).
Keeping this in mind here will be analysed if Carbó indices fulfil the comparative
relations axioms. From the structure of these indices it is evident that they fulfil the
allowed values and the symmetry axioms, for this reason only the proof of the extreme
values axiom will be given.

Carbó similarity index:

It is necessary to prove that ∀Mi , M j ∈ M : Bij ≤ Bii.
∀Mi it is true that Bii = 1.
∀Mi , M j ∈ M : (i, j)√

(i,i)·( j, j)
≤ 1 (Cauchy-Schwarz’s inequality [33])

⇒ ∀Mi , M j ∈ M : Bij ≤ Bii (31)

It can be easily proved that when Mi �= M j , Bi j = 1 ⇔ ρi = kρ j , k ∈ �+, k �= 1.
But, although such a condition can be perhaps considered as a possibility in the
abstract mathematical analysis, the situation described by the above relation of den-
sities is physically impossible. Then, Bij = 1 ⇔ Mi = M j . We have then proved
that,∀Mi ∈ M, Bii is a strict maximum of the set

{
Bij

}
, M j ∈ M . This means that

Carbó index can be effectively considered as a similarity relation among the objects
of any quantum objects set.

Carbó dissimilarity index:

As it was noticed previously, this index is the Euclidean distance among vectors i and j.
In accordance with the axioms of the metrics [33], Dij ≥ 0. Besides,Dij = 0 ⇔ i = j ,
then, ∀i, j ∈ M, i �= j : Dii < Dij. So, Carbó dissimilarity index fulfils the com-
parative relations axioms. In this case we do not refer to the explicit correspondence
between the Carbó dissimilarity index and a certain group of molecules and we work
with this index operating over two arbitrary vectors. We prefer to make this exception
since it allows us to notice that any metric can be taken as a measure of the differences
among the elements of the corresponding metric space (it can be seen that we have
used the metric’s axioms without referring to an explicit one, for that reason we can
assure that the previous demonstration is valid for any metric).

3.2.2 Analysis of the performance of the extreme values axiom for
Hodgkin–Richards, Petke, Tanimoto, conjugate Petke and conjugate
Hodgkin–Richards similarity indices

Using the same nomenclature as before these indices can be written as:
Hodgkin–Richards index:

Hi j = 2(i, j)

(i, i) + ( j, j)
(32)
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Conjugate Hodgkin–Richards index:

H∗
i j = (i, j) {1/(i, i) + 1/( j, j)}

2
(33)

Petke index:

Pi j = (i, j)

max {(i, i), ( j, j)} (34)

Conjugate Petke index:

P∗
i j = (i, j)

min {(i, i), ( j, j)} (35)

Tanimoto index:

Ti j = (i, j)

(i, i) + ( j, j) − (i, j)
(36)

For the previous indices the demonstration of the fulfilling of the first two axioms of
the comparative relations is also trivial. We will use the following equivalence rela-
tionship in the following: Mi ≡ M j ⇔ ρi = ρ j .

Hodgkin–Richards index:

∀Mi ∈ M Hii = 1, which can be easily proven. According to (30) (i, i) and ( j, j) are
positive numbers, for that reason it can be used the well known inequality [33]:

√
(i, i) · ( j, j) ≤ (i, i) + ( j, j)

2
(37)

using the Cauchy–Shcwarz’s inequality

(i, j) ≤ √
(i, i) · ( j, j) (38)

we obtain

2 (i, j) ≤ (i, i) + ( j, j) (39)

and:

2 (i, j)

(i, i) + ( j, j)
≤ 1 (40)

Meaning that:

Hi j ≤ 1 (41)
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Resulting finally that, ∀Mi , M j ∈ M, Hi j ≤ Hii

To demonstrate that (41) is a strict inequality when Mi �= M j the expressions of
the integrals corresponding to the notations (27) and (21) will be used.

Let ρ j be: ρ j = ρi + δR . Then:

Hi j =
2

(
∫

D
ρ2

I Ω(r)dr + ∫

D
ρI Ω(r)δRdr

)

2
∫

D
ρ2

I Ω(r)dr + 2
∫

D
ρI Ω(r)δR dr + ∫

D
δ2

RΩ(r)dr
(42)

From (42) it is clear that Hi j = 1 ⇔ ∫
D δ2

RΩ(r)dr = 0
Remembering that ρ j and ρi are continuous functions, δR will be also continuous [33].
With this and the properties of the L2 [33] space it is clear that ∀r ∈ D, δR (r) ≡ 0.
Then ρi = ρ j∀r ∈ D.
Keeping this in mind we can affirm that Hi j = 1 ⇔ Mi = M j . This proves
that,∀Mi ∈ M, Hii is a strict maximum of the set

{
Hi j

}
, M j ∈ M .

Conjugate Hodgkin–Richards index:
It can be easily shown that ∀Mi ∈ M : H∗

i i = 1. But it has been already demon-
strated that this index is unbounded from above [26]. That means that we can find

situations in which H∗
i i is not a strict maximum of the set

{
H∗

i j

}
, M j ∈ M . One of

those situations is the following: we know that ∀Mi , M j ∈ M : (i, j) > 0; then we
can write: ( j, j) = p2(i, i); (i, j) = q2(i, i). It is important to realize that these are
relations between positive numbers, not between density functions. From here and in
accordance with (33) we will have that:

H∗
ij = q2(i, i)

{
1/(i, i) + p−2/(i, i)

}

2
= q2

2

(
1 + 1

p2

)
(43)

From here it is obvious that q2 ≥ 2 ⇒ H∗
ij > 1.

This proves that in some occasions the conjugate Hodgkin-Richards index cannot be
used as a similarity index.

Petke index:
It can be proven without difficulty that, ∀Mi ∈ M : Pii = 1.
Supposing that max {(i, i) , ( j, j)} = (i, i), then:

Pi j = (i, j)

(i, i)
(44)

knowing that:

(i, j) = Bi j

√
(i, i) · ( j, j) (45)
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Then:

Pi j = Bi j
√

(i, i) · ( j, j)

(i, i)
= Bi j

√
( j, j)

(i, i)
(46)

It was already demonstrated that Bi j ≤ 1 besides, since max {(i, i) , ( j, j)} = (i, i) :√
( j, j)
(i,i) ≤ 1. Keeping this in mind:

Pi j ≤ 1 (47)

Finally ∀Mi , M j ∈ M, Pi j ≤ Pii

To prove that Pi j = 1 ⇔ Mi = M j we can remember that it was already

shown that Mi �= M j ⇔ Bi j < 1. Then, because
√

( j, j)
(i,i) ≤ 1, we will have that

Pij = Bij

√
( j, j)
(i,i) < 1.

The previous result ends up proving that ∀Mi ∈ M, Pii is a strict maximum of the
set

{
Pij

}
, M j ∈ M . (It should be noticed that we would arrived to the same result if

we had supposed that max {(i, i) , ( j, j)} = ( j, j)).

Conjugate Petke index:
It is evident that ∀Mi ∈ M : P∗

ii = 1. But it has been already demonstrated that this
index is unbounded from above [26]. That means that situations could be found in

which P∗
ii is not a strict maximum of the set

{
P∗

ij

}
, M j ∈ M . In order to show cases

when this happens let us write (i, j) = q2(i, i), again a relation between numbers.
Doing so:

P∗
i j = q2(i, i)

(i, i)
= q2 (48)

where it was supposed that min {(i, i) , ( j, j)} = (i, i). From here it is obvious that
q2 > 1 ⇒ P∗

ij > 1. This shows the possibility of situations in which the conjugate
Petke index cannot be interpreted as a similarity index.

Tanimoto index:
Firstly it is important to prove that the calculation of this index can be carried out for
any two moleculesMi , M j . The last is equivalent to prove that is impossible that the
denominator of this index could be 0. It is equivalent to prove that, ∀Mi , M j ∈ M :
(i, j) �= (i, i) + ( j, j).
As it was already discussed:

2 (i, j) ≤ (i, i) + ( j, j)
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According to the properties of the electronic density function, (i, j) �= 0 ⇒ (i, j) > 0,
then:

(i, j) < 2 (i, j) ≤ (i, i) + ( j, j) (49)

Besides, if (i, j) = 0 it is easy to see that Ti j = 0. The previous result proves that it
is always possible to calculate the Tanimoto index for any two molecules.
It can be easily shown that, ∀Mi ∈ M : Tii = 1. Since we want to prove that Ti j ≤ 1
it is enough to demonstrate that, in the cases when Ti j �= 0 : T −1

i j ≥ 1.
Since:

Ti j = (i, j)

(i, i) + ( j, j) − (i, j)
(50)

T −1
i j = (i, i) + ( j, j)

(i, j)
− 1 (51)

In accordance with (39):

T −1
i j ≥ 2 (i, j)

(i, j)
− 1 = 1 (52)

Since Ti j = 0 implies that Ti j < 1 it has been demonstrated that ∀Mi , M j ∈ M :
Ti j ≤ Tii .

Now it will be proven that Mi �= M j ⇔ Ti j < 1. If Ti j = 1:

(i, j)

(i, i) + ( j, j) − (i, j)
= 1 (53)

(i, j) = (i, i) + ( j, j) − (i, j)

(i, i) − 2 (i, j) + ( j, j) = 0

(i − j, i − j) = 0 (54)

Making explicit the integral in (54):

∫

D

[
ρi − ρ j

]
Ω(r)

[
ρi − ρ j

]
dr = 0 (55)

and remembering that ρi and ρ j are continuous, in accordance with the properties of
the L2space [33], it implies that ∀r ∈ D, ρi = ρ j . This proves that ∀Mi ∈ M, Tii is
a strict maximum of the set

{
Ti j

}
, M j ∈ M .

We have demonstrated that Hodgkin–Richards, Petke and Tanimoto similarity indices
fulfil the axioms of the comparative relations independently of the considered quantum
object set M. Then, all of them can be used to carry out comparisons among the objects
of any quantum objects set. This shows how the comparative relations character of
these indices can be derived directly from the previously discussed axioms. This is a
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very important result, since it implies that there are no contradictions among expres-
sions that have been used during long time in the study of the quantum similarity,
and the formalism presented here. It was also shown that situations exist in which the
conjugate Hodgkin-Richards and the conjugate Petke indices cannot be interpreted as
similarity indices. It must be stated again that these violations in the performance of
the 3rd Axiom are given by violations of our intuitive knowledge of the comparative
relations, so they are independent of the equivalence relationship established over the
elements of any quantum objects set.

3.2.3 Analysis of the consistency between Carbó, Hodgkin–Richards, Petke
and Tanimoto indices

It is of interest to know if the results obtained by means of the application of the
previously discussed indices do not present discrepancies among them; so we will
investigate the consistency of the studied indices. The fact that some comparative
relations fulfil the Consistency Relationship implies that the qualitative information
obtained by means of them will be the same, being therefore concordant the obtained
results. According to how the Consistency Relationship was presented, to analyse
its fulfilling means to work with comparative relations of different types, so we will
work separately with each of the similarity indices, discussing in detail for every
particular case its consistency referred to Carbó dissimilarity index (we exclude the
analysis related to conjugate Hodgkin-Richards and conjugate Petke indices since it
was already shown that there are situations in which they cannot be interpreted as
similarity indices). Though it is also necessary to know when the results obtained
with a group of comparative relations of the same type are consistent among them,
in this work we will limit to analyse the fulfilling of the Consistency Relationship in
the form that it has been presented here, leaving for a future paper the analysis of the
consistency of comparative relations sets of the same type.

Carbó similarity index:
Let it be three objects i, j, k ∈ M : Di j ≥ Dik . According to the Consistency Rela-
tionship:

Bi j ≤ Bik ⇔ Di j ≥ Dik (56)

To investigate if the relation is fulfilled the following relations are used:

Dij = √
(i, i) + ( j, j) − 2 (i, j); (i, j) = Bij

√
(i, i) ( j, j)

Dik = √
(i, i) + (k, k) − 2 (i, k); (i, k) = Bik

√
(i, i) (k, k),

(57)

then

Di j =
√

(i, i) + ( j, j) − 2Bi j
√

(i, i) ( j, j)

Dik =
√

(i, i) + (k, k) − 2Bik
√

(i, i) (k, k)
(58)
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D2
i j − D2

ik = ( j, j) − (k, k) + 2
{

Bik

√
(k, k) − Bi j

√
( j, j)

} √
(i, i)

Supposing that Di j ≥ Dik

( j, j) − (k, k) + 2
{

Bik

√
(k, k) − Bi j

√
( j, j)

} √
(i, i) ≥ 0 (59)

Let (k, k) = p2
1 (i, i) , and ( j, j) = p2

2 (i, i)
Then

p1 Bik − p2 Bi j ≥ p2
1 − p2

2

2
(60)

Case a:

p1 = p2 ⇒ Bi j ≤ Bik (61)

In this case the indices are consistent. (This is the case when (k, k) = ( j, j))

Case b:

p1 < p2; p2 = p · p1; p > 1 (62)

p1 Bik − p p1 Bi j ≥ p2
1 − p2 p2

1

2

Bik ≥ pBi j − p1
(

p2 − 1
)

2
(63)

The last expression does not imply that Bik ≥ Bi j . Only if p ≈ 1 ((k, k) ≈ ( j, j)) it
can be conclusively affirmed that the indices are consistent.

Case c:

p2 < p1; p1 = p · p2; p > 1 (64)

pBik − Bi j ≥ p2
(

p2 − 1
)

2 (65)
pBik − Bi j ≥ 0

which is conclusive only if p ≈ 1.

So, cases could exist when these two indices are not consistent. Only in a very few
number of cases it can be unambiguously concluded that they give the same qualitative
information.
This last result shows that under certain conditions it cannot be assured that Carbó
indices are consistent between them; therefore, it has to be taken into account when
working at the same time with the results they give.
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Hodgkin–Richards index:
In this case:

Hi j ≥ Hik (66)

Remembering (29) and (32)

(i, i) + ( j, j) − D2
i j

(i, i) + ( j, j)
≥ (i, i) + (k, k) − D2

ik

(i, i) + (k, k)
(67)

[(i, i) + (k, k)] ·
[
(i, i) + ( j, j) − D2

i j

]
− [(i, i) + ( j, j)] · [

(i, i) + (k, k) − D2
ik

]

[(i, i) + ( j, j)] · [(i, i) + (k, k)]
≥ 0

D2
ik [(i, i) + ( j, j)] ≥ D2

i j [(i, i) + (k, k)] (68)

D2
ik

[(i, i) + ( j, j)]

[(i, i) + (k, k)]
≥ D2

i j (69)

If ( j, j) ≤ (k, k) ⇒ Dik ≥ Di j , then the indices are consistent.
Now, when: ( j, j) > (k, k) ⇒ (i,i)+( j, j)

(i,i)+(k,k)
= r2 > 1

Then:

r2 · D2
ik ≥ D2

i j (70)

|r | · Dik ≥ Di j (71)

But from this it is not possible to assure that Di j ≤ Dik(because |r | > 1). As in
the previous case, this means that in certain cases the results from Hodgkin-Richards
index and from Carbó dissimilarity index could not be consistent between them.

Petke index:
Supposing:

Pi j ≥ Pik (72)

and remembering expressions (29) and (34), under the assumption that max{(i, i),
( j, j)} = max {(i, i) , (k, k)} = (i, i)

(i, i) + ( j, j) − D2
i j

2 (i, i)
≥ (i, i) + (k, k) − D2

ik

2 (i, i)
(73)

( j, j) − D2
i j ≥ (k, k) − D2

ik

( j, j) − (k, k) ≥ D2
i j − D2

ik (74)

When ( j, j) > (k, k) it is possible that Di j > Dik , therefore, cases could exist in which
it is not possible to assure that Petke index is consistent with Carbó dissimilarity index.
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Tanimoto index:
Let:

Ti j ≥ Tik (75)

Remembering (36)

(i, j)

(i, i) + ( j, j) − (i, j)
≥ (i, k)

(i, i) + (k, k) − (i, k)
(76)

(i, j) · [(i, i) + (k, k) − (i, k)] ≥ (i, k) · [(i, i) + ( j, j) − (i, j)] (77)

Working with (29) in the left hand side of (77) (for the right hand side the work is
exactly the same changing the correspondent sub indexes) it is obtained:

1

2

[
(i, i) + ( j, j) − D2

i j

]
·
[
(i, i) + (k, k) − 1

2

[
(i, i) + (k, k) − D2

ik

]]

= 1

4

[
(i, i) + ( j, j) − D2

i j

]
·
[
(i, i) + (k, k) + D2

ik

]
(78)

From (77) and (78):

[
(i, i) + ( j, j) − D2

i j

]
·
[
(i, i) + (k, k) + D2

ik

]

≥
[
(i, i) + (k, k) − D2

ik

]
·
[
(i, i) + ( j, j) + D2

i j

]
(79)

Working with (79):

D2
ik [(i, i) + ( j, j)] ≥ D2

i j [(i, i) + (k, k)] (80)

This last expression is identical to (68) then, in the case of the Tanimoto index, it is
not possible to assure the consistency of its results with those obtained by means of
the Carbó dissimilarity index in some particular cases.
The previous results are extremely important since they show that cases can be found
when the results obtained with the studied similarity indices could not be consistent
with those obtained from the Carbó dissimilarity index. This does not mean that it
is impossible to work with these indices as comparative relations because, as it was
already discussed, in all the cases they fulfil the axioms of these relations. The fact
that in some occasions the indices here presented do not fulfil the Consistency Rela-
tionship only implies that under some conditions the results they provide could be
contradictory. The above-mentioned prevents us against possible incongruities that
could appear in the work with these indices, but it does not deny the possibility of
consider the results that we obtain by means of them as comparative relations among
the elements of any quantum objects set M . Any way, an interesting idea is to construct
indices based in a procedure that guaranties their consistency. It will be presented in
a future work.
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4 Conclusions

In this paper a formal theory of the comparative relations is proposed with their abstract
characterization through a group of definitions and axioms. Special attention was
given to the justification of each axiom as well as the description of its principal con-
sequences. Additionally, several quantum similarity and dissimilarity measures and
indices were analyzed following the introduced formal theory. It must be remarked that
we are providing the natural interpretation of comparative relations for Carbó, Hodg-
kin–Richards, Petke and Tanimoto indices through the presented axioms, though some
times they could be non consistent among them. This is a very important result, since
it implies that there are no contradictions among expressions that have been used
during long time in the study of the molecular quantum similarity and the formalism
presented here.
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